
100GBit QSFP28 LR4, 10km, DFB, LC-Duplex, Singlemode, Enterprise Version

Features

- Hot-pluggable QSFP28 MSA form factor
- Duplex LC receptacle optical interface
- Transmitter: cooled 4x25Gb/s DML laser
- Receiver: 4x25Gb/s PIN receiver
- Compliant with CEI-28G-VSR
- Single +3.3V power supply
- Low power dissipation (max: 4.0W)
- Built in digital diagnostic function
- Operating case temperature range 0°C to 70°C

Application

- 100GBASE-LR4
- InfinibandQDR and DDR interconnects
- Client-side 100G Telecom connections

Functional Description

The 100G QSFP28 LR4 optical transceiver integrates the transmit and receive path onto one module. On the transmit side, four lanes of serial data streams are recovered, retimed, and passed on to four laser drivers, which control four lasers with 1295.5, 1300.0, 1304.5, and 1309.1nm center wavelengths. The optical signals are then multiplexed into a single-mode fiber through an industry-standard LC connector. On the receive side, four lanes of optical data streams are optically demultiplexed by an integrated optical demultiplexer. Each data steam is recovered by a photodetector and transimpedance amplifier, retimed, and passed on to an output driver. This module features a hot-pluggable electrical interface, low power consumption, and 2-wire serial interface.

Transceiver Block Diagram

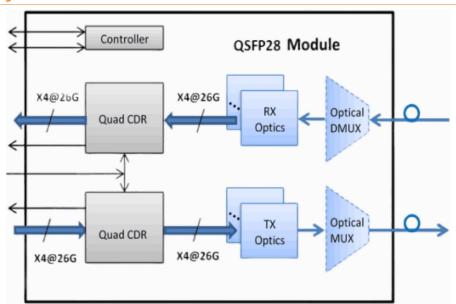


Figure 1. Transceiver Block Diagram

100GBit QSFP28 LR4, 10km, DFB, LC-Duplex, Singlemode, Enterprise Version

Recommended Power Supply Filter

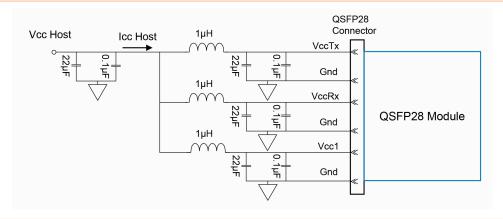
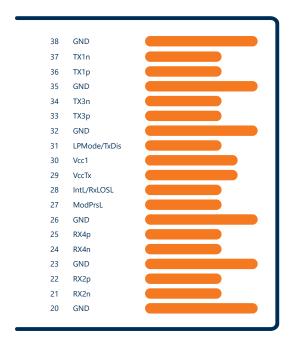
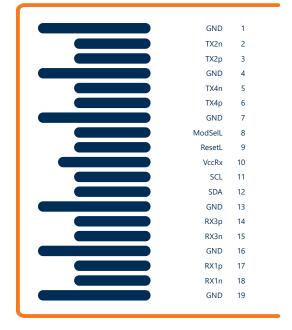




Figure 3. Recommended Power Supply Filter

Pin Assignment and Description

Top Side Viewed from Top

Bottom Side Viewd from Bottom

Figure 2. MSA Compliant Connector

100GBit QSFP28 LR4, 10km, DFB, LC-Duplex, Singlemode, Enterprise Version

PIN	PIN Logic Symbol		Name/Description			
1		GND	Ground	1		
2	CML-I	Tx2n	Transmitter Inverted Data Input			
3	CML-I	Tx2p	Transmitter Non-Inverted Data output			
4		GND	Ground	1		
5	CML-I	Tx4n	Transmitter Inverted Data Input			
6	CML-I	Tx4p	Transmitter Non-Inverted Data output			
7		GND	Ground	1		
8	LVTTL-I	ModSelL	Module Select			
9	LVTTL-I	ResetL	Module Reset			
10		VccRx	+3.3V Power Supply Receiver	2		
11	LVCMOS-I/O	SCL	2-Wire Serial Interface Clock			
12	LVCMOS-I/O	SDA	2-Wire Serial Interface Data			
13		GND	Ground	1		
14	CML-O	Rx3p	Receiver Non-Inverted Data Output			
15	CML-O	Rx3n	Receiver Inverted Data Output			
16		GND	Ground	1		
17	CML-O	Rx1p	Receiver Non-Inverted Data Output			
18	CML-O	Rx1n	Receiver Inverted Data Output			
19		GND	Ground	1		
20		GND	Ground	1		
21	CML-O	Rx2n	Receiver Inverted Data Output			
22	CML-O	Rx2p	Receiver Non-Inverted Data Output			
23		GND	Ground	1		
24	CML-O	Rx4n	Receiver Inverted Data Output	1		
25	CML-O	Rx4p	Receiver Non-Inverted Data Output			
26		GND	Ground	1		
27	LVTTL-O	ModPrsL	Module Present			
28	LVTTL-O	IntL/RxLOSL	Interrupt. Optionally configurable as RxLOSL via the management interface	(SFF-8636)		
29		VccTx	+3.3V Power Supply transmitter	2		
30		Vcc1	+3.3 V Power Supply	2		
31	LVTTL-I	LPMODE/TxDis	Low Power Mode. Optionally configurable as TxDis via the management interfa	ice (SFF-863		
32		GND	Ground			
33	CML-I	Тх3р	Transmitter Non-Inverted Data Input			
34	CML-I	Tx3n	Transmitter Inverted Data Input			
35		GND	Ground			
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input			
37	CML-I	Tx1n	Transmitter Inverted Data Output			
38		GND	Ground			

Notes

^{1.} GND is the symbol for signal and supply (power) common for the QSFP28 module. All are common within the module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal common ground plane.

^{2.} VccRx, Vcc1 and VccTx are the receiving and transmission power suppliers and shall be applied concurrently. Recommended host board power supply filtering is shown in Figure 3 below. Vcc Rx, Vcc1 and Vcc Tx may be internally connected within the module in any combination. The connector pins are each rated for a maximum current of 1000mA.

100GBit QSFP28 LR4, 10km, DFB, LC-Duplex, Singlemode, Enterprise Version

Electrical Characteristics

Tested under recommended operating conditions, unless otherwise noted

Parameter	Symbol	Min.	Typical	Max.	Units	Notes
Supply Voltage	Vcc	3.13	3.3	3.47	V	
		Transmi	itter			
Input differential impedance	Rin		100		Ω	1
Differential data input swing	Vin, pp	180		1000	mV	
Transmit Disable Voltage	VD	Vcc- 1.3		Vcc	V	2
Transmit Enable Voltage	VEN	Vee		Vee+ 0.8	V	
		Reciev	ver .			
Differential data output swing	Vout, pp	300		850	mV	3
LOS Fault	VLOS _{fault}	Vcc- 1.3		VccHOST	V	4
LOS Normal	VLOS _{norm}	Vee		Vee+0.8	V	4

Notes

- 1. Connected directly to TX data input pins. AC coupled thereafter.
- 2. Optional for TX disable
- 3. Into 100 ohms differential termination
- 4. Loss Of Signal is LVTTL. Logic 0 indicates normal operation; logic 1 indicates no signal detected.

Absolute Maximum Ratings

It has to be noted that the operation in excess of any individual absolute maximum ratings might cause permanent damage to this module.

Parameter	Symbol	Min.	Max.	Units	Notes
Storage Temperature	T _s	-40	85	degC	
Operating Case Temperature	T _{OP}	0	70	degC	
Power Supply Voltage	V _{cc}	-0,5	3,6	V	
Relative Humidity (non- condensation)	RH	0	85	%	
Rx Damage Threshold, per Lane	P _{Rdmg}	5,5		dBm	

Recommended Operating Conditions and Power Supply Requirements

Parameter	Symbol	Min.	Typical	Max.	Units
Operating Case Temperature	T _{OP}	0		70	degC
Power Supply Voltage	V _{cc}	3.135	3.3	3.465	V
Data Rate			103.1		Gb/s
Supply Current	I _{cc}			1.2	Α

Digital Diagnostic Functions

The following digital diagnostic characteristics are defined over the Recommended Operating Environment unless otherwise specified. It is compliant to SFF-8436.

Parameter	Symbol	Min.	Max.	Units	Notes
Temperature monitor absolute error	DMI_Temp	-3	3	degC	Over operating temperature range
Supply voltage monitor absolute error	DMI _VCC	-0.15	0.15	V	Over full operating range
Channel RX power monitor absolute error	DMI_RX_Ch	-2	2	dB	1
Channel Bias current monitor	DMI_Ibias_Ch	-10%	10%	mA	Ch1~Ch4
Channel TX power monitor absolute error	DMI_TX_Ch	-2	2	dB	1

Notes

1. Due to measurement accuracy of different single mode fibers, there could be an additional +/-1 dB fluctuation, or a +/-3 dB total accuracy.

100GBit QSFP28 LR4, 10km, DFB, LC-Duplex, Singlemode, Enterprise Version

Optical Characteristics

Tested under recommended operating conditions, unless otherwise noted

Parameter	Symbol	Unit	Min.	Typical	Max.	Notes	
		Transmit	ter				
Signaling rate, each lane	DR _{PL}	Gb/s		1			
	λ1		1294.53	1295.56	1296.59		
5 1 W 1 (1 B	λ2	nm	1299.02	1300.05	1301.09		
Four Lane Wavelength Range	λ3		1303.54	1304.58	1305.63		
	λ4		1308.09	1309.14	1310.19		
Total launch power	P _{out}	dBm	-	-	10.5		
Average launch power, each lane	P _{avg}	dBm	-4.3	-	4.5	2	
Optical modulation amplitude, each lane (OMA)	ОМА	dBm	-1.3	-	4.5		
Extinction ratio	ER	dB	4	-	-		
Side-mode suppression ratio	SMSR	dB	30	-	-		
Average launch power of OFF trans- mitter, per lane	P _{OFF}	dBm	-	-	-30		
Relative Intensity Noise	RIN	dB/Hz		-	-130		
Optical return loss tolerance	ORLT	dB	-	-	20		
Transmitter reflectance	TR	dB	-	-	-12		
Transmitter eye mask {X1, X2, X3, Y1, Y2, Y3}	Mt		{0.25, 0.4, 0.45, 0.25, 0.28, 0.4}			3	
		Receive	er				
Receive Rate for Each Lane DRPL Gb/s 25.78125 ±100 ppm							
	λ1		1294.53	1295.56	1296.59		
Four Lane Wayslength Pange	λ2	nm	1299.02	1300.05	1301.09		
Four Lane Wavelength Range	λ3	11111	1303.54	1304.58	1305.63		
	λ4		1308.09	1309.14	1310.19		
Overload Input Optical Power	Pmax	dBm	5.5	-	-		
Average Receive Power for Each Lane	Pin	dBm	-10.6	-	4.5		
Receiver sensitivity (OMA), each lane	Psens	dBm	-	-	-8.6	5	
Return Loss	RL	dB	-26	-	-		
Los De-Assert	P _d	dBm	-	-	-11.6		
Los Assert	P _a	dBm	-23.6	-	-		
Loss Hysteresis	P _d -P _a	dBm	0.5	-	6		

Notes

- 1. Transmitter consists of 4 lasers operating at 25.78Gb/s each.
- 2. Minimum value is informative.
- 3. Hit ratio 5x10⁻⁵.
- 4. Receiver consists of 4 photodetectors operating at 25.78Gb/s each.
- 5. Measured with a PRBS 2^31-1 test pattern, @25.78Gb/s

100GBit QSFP28 LR4, 10km, DFB, LC-Duplex, Singlemode, Enterprise Version

Mechanical Dimensions

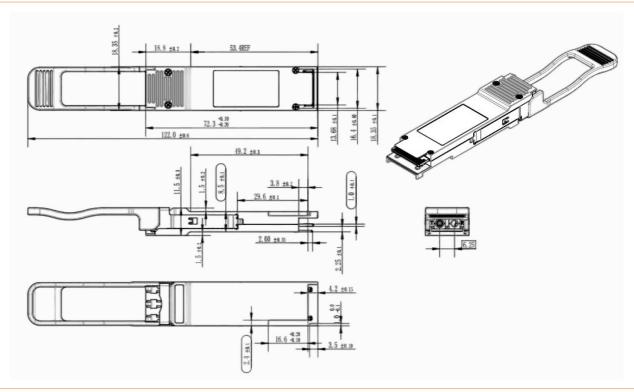


Figure 4. Mechanical Outline

ESD

This transceiver is specified as ESD threshold 1kV for high speed data pins and 2kV for all other electrical input pins, tested per MIL-STD-883, Method 3015.4 / JESD22- A114-A (HBM). However, normal ESD precautions are still required during the handling of this module. This transceiver is shipped in ESD protective packaging. It should be removed from the packaging and handled only in an ESD protected environment.

Laser Safety

This is a Class 1 Laser Product according to EN 60825-1:2014. This product complies with 21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated (June 24, 2007).

Caution: Use of controls or adjustments or performance of procedures other than those specified herein may result in hazardous radiation exposure.